Source code for src.RadiativeTransfer.Thin

import numpy as np
from .. import Constants as Cst

[docs]def get_relative_flux(_AJI, _f0, _nj): r""" calculate optically thin relative flux (some constants are removed) Parameters ---------- _AJI : np.double, np.array, (nLine,) ; scalar Einstein A coefficient, [:math:`s^{-1}`] _f0 : np.double, np.array, (nLine,); scalar Transition line frequency, [:math:`hz`] _nj : np.double, np.array, (nLine); scalar Population of the upper level of line transition, [:math:`cm^{-3}`] Returns ------- _rel_flux : np.double, np.array, (_atom.nLine,); scalar relative flux under the assumption of optically thin. [:math:`erg \; cm^{-3} \; s^{-1}`] Notes ----- The absolute flux under the assumption of optically thin [1]_. .. math:: F_{ji} = \frac{1}{4 \pi R^{2}} \int_{\Delta V} \epsilon_{ji} dV \quad [erg \; cm^{-2} \; s^{-1}] where the emissivity :math:`\epsilon_{ji}` is .. math:: \epsilon_{ji} = h \nu n_{j} A_{ji} \quad [erg \; cm^{-3} \; s^{-1}] and .. math:: \epsilon_{ji} = \int_{\nu} \epsilon_{\nu} d \nu = \int_{\nu} h \nu n_{j} A_{ji} \psi d \nu So our relative flux is given by .. math: h \nu n_{j} A_{ji} \quad [erg \; cm^{-3} \; s^{-1}] References ---------- .. [1] John T. Mariska, "The Solar Transition Region", Cambridge University Press, pp. 19, 1992 """ _rf = Cst.h_ * _f0[:] * _nj[:] * _AJI[:] return _rf