Source code for src.RadiativeTransfer.Thin
import numpy as np
from .. import Constants as Cst
[docs]def get_relative_flux(_AJI, _f0, _nj):
r"""
calculate optically thin relative flux (some constants are removed)
Parameters
----------
_AJI : np.double, np.array, (nLine,) ; scalar
Einstein A coefficient, [:math:`s^{-1}`]
_f0 : np.double, np.array, (nLine,); scalar
Transition line frequency, [:math:`hz`]
_nj : np.double, np.array, (nLine); scalar
Population of the upper level of line transition, [:math:`cm^{-3}`]
Returns
-------
_rel_flux : np.double, np.array, (_atom.nLine,); scalar
relative flux under the assumption of optically thin. [:math:`erg \; cm^{-3} \; s^{-1}`]
Notes
-----
The absolute flux under the assumption of optically thin [1]_.
.. math:: F_{ji} = \frac{1}{4 \pi R^{2}} \int_{\Delta V} \epsilon_{ji} dV \quad [erg \; cm^{-2} \; s^{-1}]
where the emissivity :math:`\epsilon_{ji}` is
.. math:: \epsilon_{ji} = h \nu n_{j} A_{ji} \quad [erg \; cm^{-3} \; s^{-1}]
and
.. math:: \epsilon_{ji} = \int_{\nu} \epsilon_{\nu} d \nu = \int_{\nu} h \nu n_{j} A_{ji} \psi d \nu
So our relative flux is given by
.. math: h \nu n_{j} A_{ji} \quad [erg \; cm^{-3} \; s^{-1}]
References
----------
.. [1] John T. Mariska, "The Solar Transition Region",
Cambridge University Press, pp. 19, 1992
"""
_rf = Cst.h_ * _f0[:] * _nj[:] * _AJI[:]
return _rf